If it's not what You are looking for type in the equation solver your own equation and let us solve it.
14x^2+126x=0
a = 14; b = 126; c = 0;
Δ = b2-4ac
Δ = 1262-4·14·0
Δ = 15876
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{15876}=126$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(126)-126}{2*14}=\frac{-252}{28} =-9 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(126)+126}{2*14}=\frac{0}{28} =0 $
| -7+9y;y=3 | | 5+(3x)=28 | | 6(1-7x)=-x-35 | | 1/2(8x-2)=3(3x-2) | | 2c-29=c | | 168-x=283 | | 3x+10+2x-2=28 | | 2r=5=19r= | | u-84=294 | | 3x^2+22x+4=0 | | 2r=5=19 | | 2(5x-7)+8=-10x+22 | | 10p-29=7p-5 | | 3x^2+22+4=0 | | 0.99=1−g | | -11=3x=4 | | 5+4v=-11 | | 3x^2-200x+3000=510 | | 15x30=450 | | 5.1d-4=6.2 | | 0=-12x(x+3) | | (5/8)(3k+1)-(1/4)(7k+2)=1 | | 11r-3(r+2)=3(4r-5)-7 | | -11x+14=-10x+33 | | 6/s+17=5 | | 63=-3(1–2n) | | 12.6+b=15.7b=15.7-12.6b=3. | | -2.5b-5=7.5 | | b3+9 =4 | | 5/8(3k+1)-1/4(7k+2)=1 | | 63=-3(1–2n | | 6(2x+1)=12x-2 |